If it's not what You are looking for type in the equation solver your own equation and let us solve it.
103=3y^2-5
We move all terms to the left:
103-(3y^2-5)=0
We get rid of parentheses
-3y^2+5+103=0
We add all the numbers together, and all the variables
-3y^2+108=0
a = -3; b = 0; c = +108;
Δ = b2-4ac
Δ = 02-4·(-3)·108
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36}{2*-3}=\frac{-36}{-6} =+6 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36}{2*-3}=\frac{36}{-6} =-6 $
| -16=-2d-8d | | -x=3/7 | | 4(-2x+1)=-36 | | -x=3/ | | 15-3x+5=-5x-10+7x | | x2+3x=2x+20 | | 5-7n=11-n | | u−3=3 | | 3^(-x+4)=76 | | -17-7c=2(9c-4) | | 8x÷8=2x÷62 | | A=5x+23 | | 4x-16=-6x+8 | | 21=b|8 | | 7x+96=189 | | 11=y/9+2 | | 2x+21=x+17 | | (X+5)(x+2)—3(4x—3)=(5—x)^2 | | -6+8(1+7s)=-30 | | (2x/3)+1/2=5/6 | | 4x+11=×+2 | | -5h+3h=23 | | 2x-22=140 | | 36-3y=6y | | 3(3w+10)/2=-10 | | -9x+4+5x=25 | | Y=-12+8x | | s8+15=18 | | 7n/2=55-n | | 2^(1+2x)=32 | | 3(2+5r)=16 | | 7a+5-a=11 |